loading

吳素幸 (Wu, Shu-Hsing)

特聘研究員
所長

  • 美國加州大學戴維斯分校植物學博士(1997)
  • +886-2-2787-1066(Lab)
  • +886-2-2787-1178(Office)
  • shuwu@gate.sinica.edu.tw
  • 阿拉伯芥基因表現調控與光訊息傳導分子機制研究

阿拉伯芥基因表現調控與光訊息傳導分子機制研究

     由於植物無法自由遷徒,所以在生長過程中,需要適時藉由調控細胞內基因的表現,來因應周遭環境的變遷,以達成最適合的生長與發育狀態。「光」是所有環境因子中影響植物生長與發育最明顯的一項。在植物中已發現有多種光受體蛋白質,這些光受體的存在使植物能夠解讀環境中的「光」在強度與波長分布的動態變化,藉由下游訊息傳導,驅動與調節基因的表現。例如,適當的光照能夠使植物由土壤中長出幼苗、躲開其他植物樹冠的陰影;「光」同時也是設定生物體內生物時鐘的重要環境訊息,使植物的代謝與生理反應得以配合一天24小時日照週期的韻律,也可以在每年特定的季節開花,繁衍後代。

     我們的研究著重於了解植物如何藉由基因的表現與訊息傳導機制來調整生理生化特性,以適切回應外在環境「光」的訊息。我們的研究結果顯示︰在幼苗的早期發育過程中,除了廣泛研究的轉錄與選擇性蛋白質降解作用外,在轉錄後調控部份,小型核糖核酸可以精準調節特定傳訊核糖核酸在細胞中的含量,選擇性剪接則可以有效增加基因表現的多樣性,另外,多元化的選擇性轉譯作用也扮演了一個非常重要的角色。在生物時鐘相關研究上,我們發現LWD1/2會經由與轉錄因子的交互作用來調控概日韻律基因表現,以穩定阿拉伯芥的生物時鐘,進而調控植物的開花時間;當基因表現在各個層面上有適切整合時,植物才得以與「光」環境有最佳的互動。

     基因表現如何調控植物的型態形成是許多植物學家探索的課題,我們研究室未來將持續致力於闡明植物回應外在「光」環境的分子機制與分子作用模式。

All publication list

Selected publication list

  • Joanito I, Sanders CC, Chu JW, Wu SH and Hsu CP* (2020) Basal leakage in oscillation: coupled transcriptional and translational control using feed-forward loops. PLOS Computational Biology, in press.
  • Jang GJ, Jang JC, Wu SH* (2020) Dynamics and functions of stress granules and processing bodies in plants. Plants 9:1122
  • Liu WY, Lin HH, Yu CP, Chang CK, Chen HJ, Lin JJ, Lu MY, Tu, SL, Shiu, SH, Wu SH*, Ku MSB* and Li WH* (2020) Maize ANT1 modulates vascular development, chloroplast development, photosynthesis and plant growth. Proc Natl. Acad. Sci. USA doi/10.1073/pnas.2012245117
  • Yu X, Li B, Jang GJ, Jiang S. Jiang D, Jang JC, Wu SH, Shan L and He P* (2019) Orchestration of processing body dynamics and mRNA decay in Arabidopsis immunity. Cell Rep. 28:2194-2205
  • Jang GJ, Yang JY, Hsieh HL and Wu SH* (2019) Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings. Proc Natl. Acad. Sci. USA 116:6451-6456
  • Chang YM, Lin HH, Liu WY, Yu CP, Chen HJ, Wartini PP, Kao YY, Wu YH, Lin JJ, Lu MY, Yu SL, Wu SH, Shiu SH, Ku MSB and Li WH* (2019) A Comparative Transcriptomics Method to Infer Gene Coexpression Networks and its applications to Maize and Rice Leaf Transcriptomes. Proc Natl. Acad. Sci. USA 116:3091-3099
  • Chen GH, Liu MJ, Xiang Y, Sheen J and Wu SH* (2018) Target of rapamycin (TOR) and ribosomal protein S6 (RPS6) transmit light signals to enhance protein translation in de-etiolating Arabidopsis seedlings. Proc Natl. Acad. Sci. USA 115:12823-12828
  • Joanito I, Chu JW, Wu SH, and Hsu CP* (2018) An incoherent feed-forward loop switches the Arabidopsis clock rapidly between two hysteretic states. Scientific Reports 8:13944
  • Huang CF, Yu CP, Wu YH, Lu MJ, Tu SL, Wu SH, Shiu SH, Ku MSB and Li WH* (2017) Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves. Proc Natl. Acad. Sci. USA 114: E6884-E6891
  • Lin MC, Tsai HL, Lim SL, Jeng ST and Wu SH* (2017) Unraveling multifaceted contributions of small regulatory RNAs to photomorphogenic development in Arabidopsis. BMC Genomics. 18: 559
  • Huang WY, Wu YC, Pu HY, Wang Y, Jang GJ and Wu SH* (2017) Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis. Plant Cell Environ. 40: 1735-1747
  • Li C, Sako Y, Imai A, Nishiyama T, Thompson K, Kubo M, Hiwatashi Y, Kabeya Y, Karlson D, Wu SH, Ishikawa M, Murata T, Benfey P.N, Sato Y, Tamada Y, Hasebe M* (2017) A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens. Nat. Commun. 8: 14242
  • Wu J.-F., Tsai H.-L., Joanito I., Wu Y.-C., Chang C.-W., Li Y.-H., Wang Y., Hong J. C., Chu J.-W., Hsu C.-P., and Wu S.-H. (2016) LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat. Commun. 7, 13181 doi: 10.1038/ncomms13181
  • 2.Huang C.-F., Chang Y.-M., Lin J.-J., Yu C.-P., Lin H.-H., Liu W.-Y., Yeh S., Tu S.-L., Wu S.-H., Ku M. S.-B.*, and Li W.-H.* (2016) Insights into the regulation of C4 leaf development from comparative transcriptomic analysis. Curr. Opin. Plant Biol. 30: 1-10
  • Lee W.-C., Lu S.-H., Lu M.-H., Yang C.-J., Wu S.-H., Chen H.-M* (2015) Asymmetric bulges and mismatches determine 20-nucleotide microRNA formation in plants. RNA Biol. 12: 1054-66
  • Yu C.-P., Chen S. C.-C., Chang Y.-M., Liu W.-Y., Lin H.-H., Lin J.-J., Chen H.-J., Lu Y.-J., Wu Y.-H., Lu M.-Y. J., Lu C.-H., Shih A. C.-C., Ku M. S.-B., Shiu S.-H.*, Wu S.-H.*, Li W.-H.* (2015) Transcriptome dynamics of developing maize leaves and genome-wide prediction of cis elements and their cognate transcription factors. Proc. Natl. Acad. Sci. USA 112: E2477-86
  • Tsai H.-L., Li Y.-H., Hsieh W.-P., Lin M.-C., Ahn J. H., Wu S.-H.* (2014) HUA ENHANCER 1 is involved in post-transcriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis. Plant Cell 26: 2858-2872
  • Wu H.-Y., Liu K.-H., Wang Y.-C., Wu J.-F., Chiu W.-L., Chen C.-Y., Wu S.-H., Sheen J., Lai E.-M.* (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19
  • Wu S.-H.* (2014) Gene expression regulation in photomorphogenesis: from the perspective of central dogma. Ann. Rev. Plant Biol. 65:311-333
  • Liu M.-J., Wu S.-H., Wu J.-F., Lin W.-D., Wu Y.-C., Tsai T.-Y, Tsai H.-L., Wu S.-H.* (2013) Translational landscape of photomorphogenic Arabidopsis. Plant Cell 10: 3699-710
  • Chen C.-E., Yeh K.-C., Wu S.-H., Wang H.-I., Yeh H.-H.* (2013) A vicilin-like seed storage protein, PAP85, is involved in tobacco mosaic virus replication. J Virol. 87:6888-68900
  • Chen YY, Wang Y, Shin LJ, Wu JF, Shanmugam V, Tsednee M, Lo JC, Chen CC, Wu SH, and Yeh KC.* (2013) Iron is involved in maintenance of circadian period length in Arabidopsis. Plant Physiol. 161:1409-1420.
  • Hsieh WP, Hsieh HL, Wu SH.* (2012) Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development. Plant Cell 24: 3997–4011
  • Liu MJ, Wu S, Chen HM, Wu SH.* (2012) Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Molecular Systems Biology 8:566.
  • Chang CS, Maloof JN, Wu SH.* (2011) COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol. 156:228-239.
  • Wang Y, Wu JF, Nakamichi N, Sakakibara H, Nam HG, and Wu SH.* (2011) LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell 23: 486–498.
  • Chen HM, Chen LT, Patel K, Li YH., Baulcombe D, and Wu SH* (2010) 22-nucleotide RNA triggers secondary siRNA biogenesis in plants.  Proc. Natl. Acad. Sci. USA 107:15269-15274.
  • Khanna R*, Kronmiller BA, Maszle DR, Coupland G, Holm M, Mizuno T, and Wu SH. (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416-3420.
  • Wu JF, Wang Y, and Wu SH.* (2008) Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol. 148:948-959
  • Chang CS, Li YH, Chen LT, Chen WC, Hsieh WP, Shin J, Jane WN, Chou SJ, Choi G, Hu JM, Somerville S, and Wu SH.* (2008) LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J. 54:205-219.
  • Chen HM, Li YH, and Wu SH.* (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:3318-3323.
吳靜芬 Jing-Fen Wu
Research Assistant 

fenny@gate.sinica.edu.tw

林岑穎 Tsen-Ying Lin 
Research Assistant
crosswing052@gmail.com
吳怡蓁 Yi-Chen Wu
Research Assistant 
wyc9823@gate.sinica.edu.tw
陳冠宏 Guan-Hong Chen
Postdoctoral Fellow
ken1214@gate.sinica.edu.tw
陳怡仁 I-Jen Chen
Master Student
i10819i68@gmail.com
林心仁 Sim Lin Lim 
Postdoctoral Fellow
simlinlim86@gate.sinica.edu.tw
黃俊凱 Chun-Kai Huang 
Postdoctoral Fellow
hck0903@gate.sinica.edu.tw
吳和為 Ho-Wei Wu 
PhD Student
b99b01053@ntu.edu.tw
陳彥麇 Yen-Chiun Chen
Research Assistant
wotan13233@gmail.com
黃薰仙 Xun-Xian Huang 
Research Assistant
huangsyun0508@gmail.com