loading

吳志航 (Wu, Chih-Hang)

助研究員

  • 2020- Assistant Research Fellow, IPMB, Academia Sinica, Taiwan
  • 2016-2019 Postdoctoral Scientist, The Sainsbury Laboratory, UK
  • 2016 Ph.D., The Sainsbury Laboratory, University of East Anglia, UK
  • 2011-2012 Research Assistant, National Taiwan University, Taiwan
  • 2008-2011 Research Assistant, IPMB, Academia Sinica, Taiwan
  • 2007 M.S., Plant Pathology and Microbiology, National Taiwan University, Taiwan
  • 2005 B.S., Plant Pathology and Microbiology, National Taiwan University, Taiwan
  • +886-2-2787-1142(Lab)
  • +886-2-2787-1141(Office)
  • wuchh@gate.sinica.edu.tw
  • Plant Immunity; Molecular Plant-microbe Interactions
  • Lab Website
  • ORCID
  • Google Scholar

植物先天免疫系統

植物在生長過程中會和許多微生物有接觸,其中有許多微生物能夠感染植物並造成病害。有一些植物病原性的微生物能夠感染重要的經濟作物,造成農業上重大的損失。為了抵抗植物病原菌的侵染,植物利用其免疫系統來偵測病原菌並限制病原菌的生長。其中包含利用細胞表面的PRR免疫受體及細胞內部的NLR 免疫受體來辨識來自病原菌的分子並引發免疫訊息傳導。許多的免疫受體具有抗病蛋白的功能,能夠保護植物避免病原菌的感染,因此非常具有在農業上應用的價值。

PRR位於細胞膜上,偵測胞外來自病原菌的PAMP,而NLR位於細胞內部,偵測由病原菌分泌到細胞內部的效應蛋白。在偵測到來自病原菌的分子之後,這些免疫受體活化下游防禦訊息傳遞,達成由PRR介導的免疫反應或由NLR介導的免疫反應。有些NLR可以單獨作用,不需依賴其他NLR來辨識病原菌及引發防禦反應。有些NLR則需共同作用,這些共同作用的NLR可以進一步地被分為可以辨識病原菌的“偵測型NLR”及引發下游免疫訊號的“輔助型 NLR”。


茄科植物的NRC免疫受體網絡

近期的研究發現NLR可以單獨作用、成對作用或是形成複雜的網絡。茄科植物的NRC網絡由多個能夠辨識不同病原菌的偵測型NLR及三個主要的輔助型 NLR (NRC2, NRC3, 及NRC4)所組成。這三個NRC在功能上有部分的重疊性但又對不同的偵測型NLR具有專一性。除此之外,NRC家族和依賴NRC的偵測型NLR在演化樹上屬於同一個大演化支內的不同次分支群。這些研究不僅顯示NLR免疫受體可以形成複雜的網絡來達成對於多種不同病原體的抗病性,更將NLR免疫受體的演化進程和涉及的免疫訊息傳遞進行連結。

本實驗室的研究著重於了解植物免疫系統的演化及功能,我們希望能夠回答關於NRC網絡的以下三個問題:

  1. 輔助型 NLR與偵測型NLR如何協同作用?
  2. NRC網絡如何在不同植物組織有專一化的現象?
  3. NRC網絡在不同的植物演化支系內有什麼不同的演化進程?
All publication list

Selected publication list

  • Wu CH and Derevnina L. 2023. The battle within: How pathogen effectors suppress NLR-mediated immunity. Current Opinion in Plant Biology org/10.1016/j.pbi.2023.102396
  • Sheikh AH, Zacharia I, Pardal1 AJ, Dominguez-Ferreras A, Sueldo DJ, Kim JG, Balmuth A, Gutierrez JR, Conlan BF, Ullah N, Nippe OM, Girija AM, Wu CH, Sessa G, Jones AME, Grant MR, Gifford ML, Mudgett MB, Rathjen JP and Ntoukakis V. 2023. Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition. Nature Communications 14: 2568. org/10.1038/s41467-023-38103-6
  • Contreras MP, Pai Hsuan, Selvaraj M, Toghani AA, Lawson DM, Tumtas Y, Duggan C, Yuen ELH, Stevenson CEM, Harant A, Wu CH, Bozkurt TO, Kamoun S, Derevnina L. Resurrection of plant disease resistance proteins via helper NLR bioengineering. 2023. Science Advances 9, eadg3861. DOI: 10.1126/sciadv.adg3861
  • Oh S, Kim S, Park HJ, Kim MS, Seo MK, Wu CH, Lee HA, Kim HS, Kamoun S, Choi D. 2023. Nucleotide-binding leucine-rich repeat network underlies nonhost resistance of pepper against the Irish potato famine pathogen Phytophthora infestans. Plant Biotechnology Journal org/10.1111/pbi.14039
  • Adachi H, Sakai T,  Harant A, Duggan C, Bozkurt TO, Wu CH#, Kamoun S#. 2023. An atypical NLR protein modulates the NRC immune receptor network.  PLOS Genetics 19(1): e1010500. org/10.1371/journal.pgen.1010500(#Corresponding author)
  • Ahn HK, Lin X, Olave-Achury AC, Derevnina L, Contreras MP, Kourelis J, Wu CH, Kamoun S, Jones JDG. 2023. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. EMBO J e111484. org/10.15252/embj.2022111484
  • Contreras MP, Pai H, Tumtas Y, Duggan C, Yuen ELH, Cruces AV, Kourelis J, Ahn HK, Lee KT, Wu CH, Bozkurt TO, Derevnina L, Kamoun S. 2023. Sensor NLR immune proteins activate oligomerization of their NRC helper. EMBO J doi.org/10.15252/embj.2022111519
  • Kourelis J, Contreras MP, Harant A, Pai H, Lüdke D, Adachi H, Derevnina L, Wu CH#, Kamoun S#. 2022. The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-surface receptor Cf-4. PLOS Genetics 18(9): e1010414. org/10.1371/journal.pgen.1010414   (#Corresponding author)
  • Lin X, Olave-Achury A, Heal R, Witek K, Karki HS, Song T, Wu CH, Adachi H, Kamoun S, Vleeshouwers VGAA, Jones JDG. 2022. A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. Molecular Plant 15(9): 1457-1469. org/10.1016/j.molp.2022.07.012
  • Derevnina L, Contreras MP, Adachi H, Upson JL, Cruces AV, Xie R, Sklenar J, Menke FLH, Mugford ST, MacLean D, Ma W, Hogenhout S, Goverse A, Maqbool A, Wu CH#, and Kamoun S#. 2021. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLOS Biology 19(8): e3001136. org/10.1371/journal.pbio.3001136 (#Corresponding author)
  • Duggan C, Moratto E, Savage Z, Hamilton E, Adachi H, Wu CH, Leary AY, Tumtas Y, Maqbool A, Kamoun S, Bozkurt TO. 2021. Dynamic accumulation of a helper NLR at the plant-pathogen interface underpins pathogen recognition. PNAS 118:e2104997118 org/10.1073/pnas.2104997118
  • Duxbury Z, Wu CH#, Ding P#. 2021. A comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond. Rev. Plant Biol 72:155-184 doi.org/10.1146/annurev-arplant-080620-104948 (#Corresponding author)
  • Witek K, Lin X, Karki HS, Jupe F, Witek AI, Steuernagel B, Stam R, van Oosterhout C, Fairhead S, Heal R, Cocker JM, Barrett W, Wu CH, Adachi H, Song T, Kamoun S, Vleeshouwers VGAA, Tomlinson L, Wulff BBH, Jones JDG. 2021. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora Nature Plants 7: 198–208. doi.org/10.1038/s41477-021-00854-9
  • Wu CH and Kamoun S. 2021. Tomato Prf requires NLR helpers NRC2 and NRC3 to confer resistance against the bacterial speck pathogen Pseudomonas syringae tomato. Acta Hortic. 1316, 61-66 doi.org/10.17660/ActaHortic.2021.1316.9 bioRxiv: doi.org/10.1101/595744
  • Gao C, Xu H, Huang J, Sun B, Zhang F, Savage Z, Duggan C, Yan T, Wu CH, Wang Y, Vleeshouwers VGAA, Kamoun S, Bozkurt TO, Dong S. 2020. Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. PNAS 117:9613-9620 org/10.1073/pnas.2002759117
  • Wu CH*, Adachi H*, De la Concepcion JC*, Castells-Graells R, Nekrasov V, Kamoun S. 2020. NRC4 gene cluster is not essential for bacterial flagellin-triggered immunity. Plant Physiology 182: 455–459. org/10.1104/pp.19.00859 (* Equal contribution)
  • Frantzeskakis L, Pietro A Di, Rep M, Schirawski J, Wu CH, and Panstruga R. 2020. Rapid evolution in plant–microbe interactions–a molecular genomics perspective. New Phytologist 225 :1134-1142. org/10.1111/nph.15966
  • Adachi H, Contreras M, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt T, Maqbool A, Win J, Kamoun S. 2019. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8: e49956. doi: 7554/eLife.49956
  • Jose S, Wu CH, and Kamoun S. 2019. Overcoming plant blindness in science, education, and society. Plants, People, Planet 1 :169-172. org/10.1002/ppp3.51
  • Wu CH and Kamoun S. 2019. Tomato Prf requires NLR helpers NRC2 and NRC3 to confer resistance against the bacterial speck pathogen Pseudomonas syringae tomato. bioRxiv. doi.org/10.1101/595744
  • Derevnina L, Kamoun S# and Wu CH#. Dude, where is my mutant? Nicotiana benthamiana meets forward genetics. New Phytologist 221:607–610. doi.org/10.1111/nph.15521 (#Corresponding author)
  • Wu CH, Derevnina L, and Kamoun S. Receptor networks underpin plant immunity. Science 360:1300-1301. doi: 10.1126/science.aat2623.
  • Upson JL, Zess EK, Bialas A, Wu CH, and Kamoun S. 2018. The coming of age of EvoMPMI: evolutionary molecular plant-microbe interactions across multiple timescales. Current Opinion in Plant Biology44:108-116.  org/10.1016/j.pbi.2018.03.003.
Postdoc
Wen-Chi Hu (胡文綺)
Ph.D. Plant Pathology and Microbiology, National Taiwan University
wenchi6276@gate.sinica.edu.tw
+886-2-27871142 (R422)
Ph.D. Student
Foong-Jing Goh (吳豐靖)
National Chung-Hsing University (TIGP-MBAS)
M.S. Plant Biology, University of Science Malaysia
wind1989@hotmail.com
+886-2-27871142 (R422)
Ph.D. Student
Hung-Yu Wang (汪紘宇)
National Chung-Hsing University (TIGP-MBAS)
M.S. Bioscience and Biotechnology, National Taiwan Ocean University
hank99911@gmail.com
+886-2-27871142 (R422)
Ph.D. Student
Juan Carlos Lopez (洛胡安)
National Chung-Hsing University (TIGP-MBAS)
M.S. Molecular Genetics and Biotechnology, University of Seville, Spain
as0200314@gate.sinica.edu.tw
+886-2-27871142 (R420)
Rotation Ph.D. Student
Sopio Tchabashvili (莎平歐)
National Chung-Hsing University (TIGP-MBAS)
M.S. Agriculture Sciences, Georgian Technical University, Georgia
tchabashvil0001@gate.sinica.edu.tw
+886-2-27871142 (R420)
Research Assistant
Ching-Yi Huang (黃靖益)
M.S. Plant Pathology and Microbiology, National Taiwan University
as0200178@gate.sinica.edu.tw
+886-2-27871142 (R420)
Research Assistant
Yu-Seng Huang (黃宇昇)
M.S. Plant Pathology and Microbiology, National Taiwan University
a0936586196@gmail.com
+886-2-27871142 (R420)
Research Assistant
Chin-Wen Chang (張槿玟)
M.S. Plant Biology, National Taiwan University
jwchang@gate.sinica.edu.tw
+886-2-27871142 (R420)
Research Assistant
Kui-Ting Lin (林奎廷)
M.S. Plant and Microbial Biology, University of Sheffield, United Kingdom
kuiting@gate.sinica.edu.tw
+886-2-27871142 (R420)
Research Assistant
Bing-Jen Chiang (江秉真)
M.S. Plant Pathology and Microbiology, National Taiwan University
as0191504@gate.sinica.edu.tw
+886-2-27871142 (R420)