loading

韋保羅 (Verslues, Paul E.)

研究員

  • PhD University of California-Riverside
  • BS, MS University of Missouri-Columbia
  • +886-2-2787-1077(Lab)
  • +886-2-2787-1186(Office)
  • paulv@gate.sinica.edu.tw
  • 乾旱相關的訊息傳遞與代謝

乾旱相關的訊息傳遞和代謝

對農產業來說,植物耐旱是個重要的議題,也因為氣候變遷所造成破壞性的影響而更被重視。植物在乾旱下對水分的減少有著複雜的偵測與反應機制。由於我們仍不清楚植物如何感知缺水和啟動分子機制以適應環境並維持產率,基礎上與應用上增加經濟作物表現量的研究受到了限制。同時也有許多代謝上的改變發生在乾旱逆境下,游離的脯胺酸累積是其中最常見的。然而脯胺酸的代謝角色與其它抗旱的代謝轉變則仍不清楚。
韋保羅實驗室長期的目標是想了解仍未知的乾旱感知能力與訊息傳遞機制以及更深入地了解適應乾旱環境的代謝轉變(特別是脯胺酸代謝)及其調控。我們同時也在努力將此新機制的知識應用於改善其它植物。本實驗室專精於逆境控制測試與乾旱生理學,以及應用分子基因體學與細胞生物學技術作為研究植物逆境的方法。我們同時也與對植物逆境與代謝感興趣的定量基因體學家和生物化學家保持著合作關係。

韋保羅實驗室主要的三個互相關聯與作用的研究目標:

1.脯胺酸的逆境代謝功能及其調控。

我們試著去找出脯胺酸代謝(圖1)在乾旱逆境中是如何作出貢獻(Sharma et al., 2011; Bhaskara et al., 2015),並以脯胺酸作為乾旱感知和訊息傳遞的指標。在正向遺傳學篩選出的突變株中所發現的基因在脯胺酸去氫酶啟動子:螢光報導基因(Proline Dehydrogenase1 (PDH1promoter:Luciferase reporter,圖2)上有著不同的表現(圖1),同時研究也發現脯胺酸合成酶P5CS1在適應乾旱環境時是如何轉變與調控植物代謝。尤其有數個特別的品系證實了更多脯胺酸所扮演的代謝角色可改變細胞中的氧化還原狀態及胞器(葉綠體及粒線體)代謝。

圖1: 脯胺酸代謝的主要途徑。P5CS1與ProDH1 (PDH1)是脯胺酸合成與分解的關鍵逆境調控酵素。

圖2: 突變株幼苗改變脯胺酸去氫酶啟動子:螢光報導基因之螢光酶表現圖。脯胺酸去氫酶1的表現在逆境下被抑制;然而此突變株在控制組與逆境條件下皆維持著高度脯胺酸去氫酶啟動子:螢光報導基因表現(紅色處)。此突變株與其它經篩選出類似的突變株在逆境下脯胺酸累積量皆有增加。脯胺酸去氫酶啟動子:螢光報導基因表現量減少的突變株也在此篩選中挑選出來並加以檢視。

2.乾旱相關的訊息傳遞機制

我們找出了AFL1(Kumar et al. 2015)以及磷酸化和細胞骨架機制等在乾旱下會促進生長的關鍵因子(圖3)。AFL1的機制以及其它經磷酸蛋白質體學與脯胺酸去氫酶啟動子:螢光報導基因篩選所找出的乾旱訊息傳遞機制也正在研究中。

圖3: 乾旱下影響植物生長的新細胞機制。

A.此圖指出AFL1在細胞膜及內膜上可能的功能,能在乾旱下擁有更好的維持生長能力。此圖出自Kumar et al., 2015。
B.早期功能未知的蛋白質磷酸酶突變株在適應乾旱時對微管構造有著更廣泛的復原能力。

3.乾旱環境適應下的自然變異表現型

乾旱導致脯胺酸累積的阿拉伯芥品系的變異中,我們找出了數個可能使得脯胺酸累積及適應乾旱的基因座(Verslues et al., 2014; Sharma et al., 2013; Kesari et al., 2012)(圖4)。目前我們正對乾旱導致的離層酸(abscisic acid; ABA)累積使用類似的方法研究中。

圖4: 不同阿拉伯芥品系的P5CS1內插子序列決定了P5CS1 後續的選擇性剪接。此變異與在不同水量下造成脯胺酸累積及環境適應的不同有所關聯。此圖來自Kesari等人,2012。

All publication list

Selected publication list

  • Wong MM, Huang X-J, Bau Y-C, Verslues PE* (2024) AT Hook-Like 10 phosphorylation determines Ribosomal RNA Processing 6-Like 1 (RRP6L1) chromatin association and growth suppression during water stress. Plant Cell & Environment 47: 24-37
  • Eckardt NA, Cutler S, Juenger TE, Marshall-Colon A, Udvardi M, Verslues PE (2023) Focus on climate change and plant abiotic stress biology. Plant Cell 35:1-3
  • Juenger TE*, Verslues PE* (2023) Time for a drought experiment: Do you know your plants’ water status?  Plant Cell 35:10-23
  • Verslues PE*, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu P-K, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA (2023) Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. Plant Cell 35:67-108
  • Bhaskara GB, Lasky JR, Razzaque S, Zhang L, Haque T, Bonnette JE, Civelek GZ, Verslues PE, Juenger TE* (2022) Natural variation identifies new effectors of water use efficiency in Arabidopsis. Proceedings of the National Academy of Sciences USA  119: (33) e2205305119
  • Verslues PE*, Longkumer T (2022) Size and activity of the root meristem: a key for drought resistance and a key model of drought-related signaling.  Physiologia Plantarum 174: e13622
  • Longkumer T, Chen C-Y, Biancucci M, Bhaskara GB, Verslues PE* (2022) Spatial differences in stoichiometry of EGR phosphatase and Microtubule-Associated Stress Protein 1 control root meristem activity during drought stress.  Plant Cell 34: 742–758
  • GL Chong, MH Foo, WD Lin, MM Wong, PE Verslues* (2019) Highly ABA-Induced 1 (HAI1)-Interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites. Proceedings of the National Academy of Sciences 116(44):22376-22385.
  • GB Bhaskara, MM Wong, PE Verslues* (2019) The flip side of phospho‐signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. Plant, cell & environment 42 (10), 2913-2930
  • Kumar MN, Bau Y-C, Longkumer T, Verslues PE* (2019) Low water potential and At14a-Like1 (AFL1) effects on endocytosis and actin filament organization. Plant Physiology 179: 1594-1607
  • Kalladan R, Lasky JR, Sharma S, Kumar MN, Juenger TE, Des Marais DL, Verslues PE* (2019) Natural variation in 9-cis-epoxycartenoid dioxygenase 3 and ABA accumulation. Plant Physiology 179: 1620-1631
  • Wong MM, Bhaskara GB, Wen T-N, Lin W-D, Nguyen TT, Chong G-L, Verslues PE (2019) Phosphoproteomics of Arabidopsis Highly ABA-Induced1 identifies AT-Hook Like10 phosphorylation required for stress growth regulation. Proceedings of the National Academy of Sciences USA  116 (6): 2354-2363
  • Kalladan R, Lasky JR, Chang TZ, Sharma S, Juenger TE, Verslues PE (2017) Natural variation identifies genes affecting drought-induced Abscisic Acid accumulation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA  114: 11536-11541
  • Bhaskara GB, Nguyen TT, Yang T-H, Verslues PE (2017) Analysis of Phosphoproteome Remodeling After Short Term Water Stress and ABA Treatments versus Longer Term Water Stress Acclimation. Frontiers in Plant Science 8: 523
  • Wong MM, Chong GL, Verslues PE (2017) Epigenetics and RNA processing: Connections to drought, salt and ABA?  In: Methods in Molecular Biology, Plant Stress Tolerance: Methods and Protocols (Second Edition) vol 1631, Chapter 1. Sunkar, R ed, Springer
  • Verslues PE (2017) Rapid quantitation of Abscisic Acid by GC-MS/MS for studies of abiotic stress response.  In: Methods in Molecular Biology, Plant Stress Tolerance: Methods and Protocols (Second Edition), vol 1631, Chapter 21. Sunkar, R ed, Springer
  • Bhaskara GB, Wen T-N, Nguyen TT, Verslues PE (2017) Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 control microtubule stability, plant growth, and drought response.  Plant Cell 29: 169-191
  •  Des Marais D*, Juenger TE, Chang, TZ, Verslues PE, Lasky JR (2017) Interactive effects of water limitation and elevated temperature on the physiology, development, and fitness of diverse accessions of Brachypodium distachyon.  New Phytologist  214(1): 132-144
  •  Verslues PE (2017) Time to grow: Factors that control plant growth during mild to moderate drought stress. Plant Cell & Environment  40: 177-179  (commentary article)
  • Shinde S, Villamor JG, Lin W-D, Sharma S, Verslues PE (2016) Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiology 172: 1074-1088.
  • Verslues PE (2016) ABA and cytokinins: challenge and opportunity for plant stress research. Plant Molecular Biology 91:629-640 (review)
  • Kumar MN1, Hsieh Y-F1, Verslues PE (2015) At14a-Like1 participates in membrane associated mechanisms promoting growth during drought in Arabidopsis thaliana.  Proceedings of the National Academy of Sciences USA 112: 10545-10550 (1. Equally contributing authors)
  • Bhaskara GB, Yang T-H, Verslues PE (2015) Dynamic proline metabolism: Importance and regulation in water limited environments. Frontiers in Plant Science6: 484. doi: 410.3389/fpls.2015.00484
  • Lovell JT*, Mullen JL, Lowry DB, Awole K, Richards JH, Sen S, Verslues PE, Juenger TE, McKay JK (2015) Exploiting differential gene expression and epistasis to discover candidate genes for drought-associated QTLs in Arabidopsis thalianaPlant Cell 27: 969-983
  • Haswell ES, Verslues PE (2015) The ongoing search for the molecular basis of plant osmosensing.  Journal of General Physiology 145: 389–394
  • Kumar MN, Verslues PE (2015) Stress physiology functions of Arabidopsis Histidine Kinase (AHK) cytokinin receptors. Physiologia Plantarum 154: 369–380
  • Wilson ME, Basu MR, Bhaskara GB, Verslues PE, Haswell ES (2014) Plastid hypoosmotic stress activates cellular osmotic stress responses.  Plant Physiology 165: 119-128
  • Verslues PE1, Lasky JR1, Juenger TE, Liu T-W, Kumar MN (2014) Genome wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis thaliana.  Plant Physiology 164: 144-159       1. Co-first authors
  • Sharma S, Shinde S, Verslues PE  (2013) Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana.  BMC Plant Biology13:182
  • Verslues PE, Bhaskara GB, Kesari R, Kumar MN (2013) Drought tolerance mechanisms and their molecular basis.  In: Plant Abiotic Stress-Second Edition;  Jenks, M.A. and Hasegawa, P.M. eds.; John Wilely and Sons, Inc.  (review book chapter)
  • Kumar MN, Jane W-N, Verslues PE (2013) Role of the putative osmosensor Arabidopsis Histidine Kinase 1 (AHK1) in dehydration avoidance and low water potential response.  Plant Physiology 161: 942-953   (Reccomended by Faculty of 1000)
  • Sharma S., Lin W, Villamor JG, Verslues PE (2013) Divergent low water potential response in Arabidopsis thaliana accessions Landsberg erecta and Shahdara.  Plant Cell & Environment 36: 994-1008
  • Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the Highly-ABA-Induced Clade A protein phosphatase 2Cs.  Plant Physiology 160: 379-395
  • Kesari R, Lasky JR, Villamor JG, Des Marais DL, Chen Y-JC, Liu T-W, Lin W, Juenger TE, Verslues PE (2012) Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation.  Proceedings of the National Academy of Sciences USA 109: 9197-9202
  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue specific proline synthesis and catabolism in growth and redox balance at low water potential.  Plant Physiology 157: 292-304
  • Verslues PE, Juenger TE (2011) Drought, metabolites and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments.  Current Opinion in Plant Biology 14: 240–245
  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction.  The Arabidopsis Book 8: 140
  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.  Plant Cell & Environment 33: 1838-1851
  • Verslues PE  (2010) Quantification of water stress-induced osmotic adjustment and proline accumulation for Arabidopsis thaliana molecular genetic studies.  In R. Sunkar ed.  Plant Stress Tolerance, Methods in Molecular Biology 639.  Springer Science+Business Media, LLC. (methods book chapter)
Neha Upadhyay Tiwari
吳妮霞
Postdoctoral Fellow
nehaut@gate.sinica.edu.tw
Tai Chien Luong
梁才建
Research Assistant
as0211097@gate.sinica.edu.tw
Hao-Yi Chang
張皓宜
Research Assistant
haoyi1221@gate.sinica.edu.tw
Rishima Maheendran
芮熙瑪
Doctoral Student
maheendran0001@gate.sinica.edu.tw
Shih-Shan Huang
黃詩珊
Lab manager
manager426@gate.sinica.edu.tw