loading

Schmidt, Wolfgang (施臥虎)

Research Fellow

  • Dr.rer.nat, Department of Biology,University of Oldenburg, Germany (1992)
  • +886-2-2787-1038(Lab)
  • +886-2-2787-1162(Office)
  • wosh@gate.sinica.edu.tw
  • Systems Biology; Molecular Plant Nutrition

 

Playing hard to get: The troublesome acquisition of soil-immobile nutrients

Research in my lab focuses on the elucidation of acquisition strategies for the generally soil-immobile mineral nutrients iron, phosphate and manganese. In particular, we seek to understand how plants control the uptake and distribution of these nutrients in response to changes in their availability. Such recalibration of cellular ion concentrations involves perception and communication of the nutrient status, re-programming of metabolic and developmental pathways, alterations in chromatin organization and a rearrangement of the translational machinery.

Plasticity on the move: Cell fate assignment dictated by migrating R3 MYB proteins

The fate of root epidermal cells, which differentiate into either root hair or non-hair cells, is determined by a complex interplay of edaphic genetic and systemic signals that results in a predictable but highly plastic pattern of epidermal cells that can vary in shape, size and function. Understanding the mechanisms that drive this plastic development of plants is of utmost importance against the background of a changing climate and the negative environmental aspects of intensive agriculture. In particular, we are investigating the role of the non-cell autonomous R3 MYB proteins CAPRICE and its paralogs in cell fate decisions in response to environmental cues.

All publication list

Selected publication list

  • Vélez-Bermúdez IC, Chou SJ, Chen AP, Lin WD, Schmidt W* (2023) Ribosome profiling (Ribo-seq) of Arabidopsis thaliana STAR Protocols, https://doi.org/10.1016/j.xpro.2023.102520
  • Vélez-Bermúdez IC, Lin WD, Chou SJ, Chen AP, Schmidt W* (2023) Transcriptome and translatome comparison of tissues from Arabidopsis thaliana. bioRxiv07.22.550136;doi: https://doi.org/10.1101/2023.07.22.550136.
  • Grillet L, Schmidt W* (2023) Comparative transcriptome analysis of iron-overaccumulating Arabidopsis genotypes uncover novel putative regulators of systemic and retrograde signaling. ResearchSquare, org/10.21203/rs.3.rs-2459577/v1
  • Radjacommare R, Lin S-Y, Usharani R, Lin W-D, Jauh G-Y, Schmidt W*, Fu H* (2023) The Arabidopsis deubiquitylase OTU5 suppresses flowering by histone modification-mediated activation of the major flowering repressorsFLC,MAF4, and MAF5International Journal of Molecular Sciences 24: 6176.
  • Vélez-Bermúdez IC, Schmidt W* (2023) Iron sensing in plants. Frontiers in Plant Science 14: 3389/fpls.2023.1145510
  • Jain D, Schmidt W* (2023) Protein phosphorylation orchestrates acclimations of Arabidopsis plants to environmental pH. bioRxiv 2023.03.19.533375
  • Bailey M, Hsieh EJ, Tsai HH, Ravindran A, Schmidt W* (2023). Alkalinity modulates a unique set of genes to recalibrate growth and pH homeostasis. Frontiers in Plant Science – Cell Biology 14. org/10.3389/fpls.2023.1100701.
  • Wang T, Liu M, Zhang D, Wang J, Chen L, Zhang X, Schmidt W, Zhang WH* (2023) Protein kinase MtCIPK12 modulates iron reduction in Medicago truncatula by regulating riboflavin biosynthesis. Plant, Cell & Environment 46: 991-1003 (back cover story)
  • Vélez-Bermúdez IC, Schmidt W* (2023) Plant strategies to mine iron from alkaline substrates. Plant and Soil 483: 1–25 (cover story)
  • Schmidt W* (2022) pH-sensing: Why plants can’t have it all. Current Biology 32: R1039-R1041
  • Longkumer T,Grillet L,Chen CY, Putra H, Schmidt W, Verslues PE* (2022) Insertion of YFP at the Arabidopsis AFL1 and P5CS1 loci shows the potential, and potential limitations, of gene targeting for functional analysis of stress-related genes. bioRxiv 03.08.483394
  • Vélez-Bermúdez IC*, Salazar-Henao JE, Riera M, Caparros-Ruiz D, Schmidt W* (2022) Immunoprecipitation for plant research. STAR Protocols 3: 101449
  • Vélez-Bermúdez IC, Salazar-Henao JE, Riera M, Caparros-Ruiz D, Schmidt W* (2022) Chromatin Enrichment for Proteomics in Plants (ChEP-P). In: Lois, L.M., Trujillo, M. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 2581. Humana, New York, NY.
  • Vélez-Bermúdez IC, Jain D, Ravindran A, Chen CW, Hsu CC, Schmidt W* (2022) Tandem mass tag-based phospho-proteomics in plants. In: Lois, L.M., Trujillo, M. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 2581. Humana, New York, NY.
  • >
  • Yang CL, Huang YT,  Schmidt S, Klein P, Chan MT, Pan IC* (2022) Ethylene Response Factor109 attunes immunity, photosynthesis, and iron homeostasis in Arabidopsis leaves. Frontiers in Plant Science 13: 841366
  • Wu Q*, Takahashi F*, Xu C, Schmidt W*, Aalen RB*, (2022). Peptide Signaling in Plants. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88974-646-0”
  • Wu Q*, Schmidt W*, Reidunn BA*,Cao X*, Takahashi F* (2022) Editorial: Peptide signaling in Plants. Frontiers in Plant Science 13: 843918
  • Buoso S, Musetti R, Marroni F, Calderan A, Schmidt W, Santi S* (2022) Infection by phloem-limited phytoplasma affects mineral nutrient homeostasis in tomato leaf tissues. Journal of Plant Physiology 271: 153659
  • Gautam CK, Tsai HH, Schmidt W* (2022) A Quick Method to Quantify Iron in Arabidopsis Bio-Protocol 12: e4342
  • Hsieh EJ, Lin WD, Schmidt W* (2022) Genomically hardwired regulation of gene activity orchestrates cellular iron homeostasis in Arabidopsis. RNA Biology 19: 143-161
  • Vélez-Bermúdez IC, Schmidt W* (2022) How plants orchestrate cellular iron homeostasis. Plant & Cell Physiology 63: 154-162 Editor’s Choice
  • Schmidt W* (2021) It’s all in the title. FEBS Letters 595: 2641-2643
  • Tsai HH, Schmidt W* (2021) The enigma of environmental pH sensing in plants. Nature Plants 7: 106-115
  • Vélez-Bermúdez IC, Schmidt W* (2021) Chromatin Enrichment for Proteomics in Plants (ChEP-P) implicates the histone reader ALFIN-LIKE6 in jasmonate signaling. BMC Genomics 22: 845
  • Gautam, C, Tsai, HH, Schmidt W (2021) IRONMAN tunes responses to iron deficiency in concert with environmental pH. Plant Physiology 187: 1728-1745
    Recommended by Faculty of 1000
  • Schmidt W (2021) It’s all in the title. FEBS Letters 595: 2641-2643
  • Schmidt W (2021) The enigma of environmental pH sensing in plants. Nature Plants 7: 106-115
  • Tsai HH, Schmidt W (2020) pH-Dependent transcriptional profile changes in iron-deficient Arabidopsis BMC Genomics 21, 694
  • Schmidt W, Thomine S, Buckhout TJ (2020) Editorial: Iron nutrition and interactions in plants. Frontiers in Plant Science https://doi.org/10.3389/fpls.2019.01670
  • Buckhout TJ, Thomine S, Schmidt W, eds. (2020) Iron Nutrition and Interactions in Plants. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-467-5
  • Vanholme R, Sundin L, Seetso KC, Kim H, Liu X, Li J, De Meester B, Hoengenaert L, Goeminne G, Morreel K, Haustraete J, Tsai HH, Schmidt W, Vanholme B, Ralph J, Boerjan W (2019) COSY catalyzes trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nature Plants 5
    https://rdcu.be/bQGva
  • Sara Buoso, Laura Pagliari, Rita Musetti, Marta Martini, Fabio Marroni, Wolfgang Schmidt & Simonetta Santi ‘Candidatus Phytoplasma solani’ interferes with the distribution and uptake of iron in tomato. BMC Genomics 20:703
    https://rdcu.be/bQKgI
     ; 
  • Grillet L, Schmidt W (2019) Iron acquisition strategies in land plants: Not so different after all. New Phytologist 224:1: 11-18
    https://doi.org/10.1111/nph.16005
  • Schmidt W (2019) The Yin and Yang of Iron in Plants and Beyond: 19th International Symposium on Iron Nutrition and Interactions in Plants (ISINIP) in Taiwan. Plant & Cell Physiology 60: 1401-1404
    https://doi.org/10.1093/pcp/pcz066
  • Grillet L, Lan P, Li W, Mokapati G, Schmidt W (2018) IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants 4: 953–963
    https://doi.org/10.1038/s41477-018-0266-y
  • Tsai HH, Rodriguez-Celma J, Lan P, Wu YC, Vélez-Bermúdez IC, Schmidt W (2018) Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiol. 177:194-207
    https://doi.org/10.1104/pp.18.00178
  • Suen DF, Schmidt W. 2018. OTU5 tunes environmental responses by sustaining chromatin structure. Plant Signaling & Behavior. Doi: 10.1080/15592324.2018.1435963.
  • Salazar-Henao JE, Mokkapati G, Khor HX, Jane WN, Schmidt W. 2018. Characterization of Root Epidermal Cell Patterning and differentiation in Arabidopsis. Methods Molecular Biology, Vol. 1761: 85-93
  • Suen DF, Tsai YH, Radjacommare R, Ahirwar RN, Fu H, Schmidt W. 2018. The Deubiqutinase OTU5 regulates root responses to phosphate starvation. Plant Physiology 176:2441-2455.
  • Suen, D. F., Tsai, Y. H., Cheng, Y. T., Radjacommare, R., Ahirwar, R. N., Fu, H., & Schmidt, W. 2018. The Deubiquitinase OTU5 Regulates Root Responses to Phosphate Starvation. Plant Physiology, pp-01525
  • Yen MR, Hsu FM, Suen DF, Tsai YH, Fu H, Schmidt W, Chen PY. 2017. Deubiqitinating enzyme OTU5 contributes to DNA methylation patterns and is critical for phosphate nutrition. Plant Physiology 175: 1826-1838
  • Grillet L, Schmidt W. 2017. The multiple facets of ferric reduction by plants. Journal of Experimental Botany, 68: 5021-5027.
  • Huang J, Xue C, Wang H, Wang L, Schmidt W, Shen RF, Lan P. 2017. Genes of ACYL CARRIER PROTEIN family show different expression profiles and overexpression of ACYL CARRIER PROTEIN 5 modulates fatty acid composition and enhances salt stress tolerance in Arabidopsis. Frontiers in Plant Science, 8, 987
  • Salazar-Henao JE, Mokkapati G, Khor EHX, Chou YC, Jane WN and Schmidt W. 2017. Characterization of the spatial pattern of cell-type differentiation and morphology in the Arabidopsis root epidermis. Methods in Molecular Biology, Vol. 1761: 85-93.
  • Tsai, H.-H. and Schmidt, W. 2017. Mobilization of Iron by Plant-Borne Coumarins. Trends in Plant Science, 22: 538-548
  • Tsai, H.-H. and Schmidt, W. 2017. One way. Or another? Iron uptake in plants. New Phytol. doi:10.1111/nph.14477
  • Jorge Rodríguez-Celma, Yi-Hsiu Tsai, Tuan-Nan Wen, Yu-Ching Wu, Catherine Curie & Wolfgang Schmidt. 2016. Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots. Scientific Reports 6, Article number: 35846  doi:10.1038/srep35846
  • Salazar Henao JE, Lin W.-D., Schmidt W. 2016. Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis. Scientific Reports, 6, 26820; doi: 10.1038/srep26820.
  • Salazar-Henao JE, Vélez-Bermúdez IC and Schmidt W. 2016. The regulation and plasticity of root hair patterning and morphogenesis. Development, 143: 1848-1858; doi: 10.1242/dev.132845
  • Jorge E. Salazar-Henao, Wolfgang Schmidt. 2016. An inventory of nutrient-responsive genes in Arabidopsis root hairs. Front. Plant Sci. 7:237. doi: 10.3389/fpls.2016.00237
  • Vélez-Bermúdez IC, Wen TN, Lan P, and Schmidt W. 2016. Isobaric tag for relative and absolute quantitation (iTRAQ)-based protein profiling in plants.Plant Proteostasis, Springer, in press.
  • Vélez-Bermúdez I-C, Salazar-Henao JE, Fornalé S, López-Vidriero I, Franco-Zorrilla J-M, Grotewold E, Gray J, Solano R, Schmidt W, Pagés M, Riera M, Caparros-Ruiz D. 2015. A MYB/ZML complex regulates wound-induced lignin genes in maize. Plant Cell 27(11):3245-59
  • Schmidt W. 2015. Root development: Pulse control. Nature Plants 1: 15148
  • Chen C-Y, Wu K, Schmidt, W. 2015. The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis. Scientific Reports, Scientific Reports 5, 15708
  • Pan IC, Tsai HH, Cheng YT, Wen TN, Buckhout T, Schmidt W. 2015. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2). 215. Molecular and Cellular Proteomics 14: 2733-2752
  • Lan P, Li W, Schmidt W. 2015. 'Omics' Approaches Towards Understanding Plant Phosphorus Acquisition and Use. Annual Plant Reviews 48: 65-97.
  • Chen CY, Schmidt W. 2015. The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC 1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots. Journal of Experimental Botany.doi: 10.1093/jxb/erv259.
  • Luo M, Tai R, Yu CW, Yang S, Chen C, Lin WD, Schmidt W, Wu K, 2015. Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis.The Plant Journal 82(6):925-36
  • Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ. 2014. Vacuolar-Iron-Transporter1-Like Proteins Mediate Iron Homeostasis in Arabidopsis.PLoS ONE 9(10): e110468.
  • Vélez-Bermúdez IC and Schmidt W. 2014. The conundrum of discordant protein and mRNA expression. Are plants special?. Front. Plant Sci5:619.
  • Schmidt W. 2014. Root systems biology. Frontiers Research Topic Ebook. ISBN: 978-2-88919-275-5
  • Pan I-C and Schmid.W. 2014. "Functional implications of K63-linked ubiquitination in the iron deficiency response of Arabidopsis roots", Frontiers in Plant Science4:542.
  • Grillet L, Mari S and Schmidt W. 2014. "Iron in seeds – loading pathways and subcellular localization", Frontiers in Plant Science, 4:535.
  • Wang J-Y, Lan P, Gao H-M, Zheng L, Li WF, Schmidt W. 2013. Expression changes of ribosomal proteins predict altered translation in phosphate- and iron-deficient Arabidopsis roots. BMC Genomics 14:783
  • Rodriguez-Celma J, Schmidt W. 2013. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds. Plant Signaling & Behavior8(11)
  • Savage N, Yang JW, Chen CY, Lin K, Monk NAM, Schmidt W. 2013. Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 are Tuned to Increase Root Hair Density in Response to Phosphate Deficiency in Arabidopsis thaliana. PLOS ONE 8(10)
  • Rodriguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W. 2013. The transcriptional response of Arabidopsis leaves to Fe deficiency. Frontiers in Plant Nutrition 4:276
  • Lan P, Li WF, Lin W-D, Schmidt W. 2013. Mapping gene activity in Arabidopsis root hairs. Genome Biology 14(6):R67 highly accessed
  • Lan P, Li WF, Schmidt W. 2013. A digital compendium of genes mediating the reversible phosphorylation of proteins in Fe-deficient Arabidopsis roots. Frontiers in Plant Nutrition 4:173
  • Rodríguez-Celma J, Lin W-D, Fu G-M, Abadía J, López-Millán A-F, Schmidt W. 2013. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiology 162(3):1473-85
  • Li WF, Lin W-D, Ray P, Lan P, Schmidt W. 2013. Genome-wide detection of condition-sensitive alternative splicing in Arabidopsis roots. Plant Physiology162(3):1750-63
  • Buckhout, T, Schmidt W. 2013. Iron in Plants. eLS DOI: 10.1002/9780470015902.a0023713
  • Lan P, Li WF, Schmidt W. 2013. Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis. BMC Genomics 14:210 highly accessed
  • Sundaravelpandian K, Chandrika NNP, Schmidt W. 2013. PFT1-controlled ROS balance is critical for multiple stages of root hair development in Arabidopsis. Plant Signaling & Behavior 8(5)
  • Chandrika NN, Sundaravelpandian K, Schmidt W. 2013. A PHD in histone language: On the role of histone methylation in plant responses to phosphate deficiency. Plant Signaling & Behavior 8(6)
  • Chandrika NN, Sundaravelpandian K, Yu SM, Schmidt W. 2013.
    ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytologist 198(3):709-20
  • Sundaravelpandian K, Chandrika NN, Schmidt W. 2013.
    PFT1, a transcriptional Mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytologist 197(1):151-61
  • Lan P, Li W, Schmidt W. 2012. Complementary Proteome and Transcriptome Profiling in Phosphate-Deficient Arabidopsis Roots Reveals Multiple Levels of Gene Regulation. Molecular and Cellular Proteomics 11(11):1156-66
  • Gollhofer J, Schläwicke C, Schmidt W, Buckhout TJ. 2011.Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana. Plant Physiology and Biochemistry 49(5): 557-564
  • Liao YY, Buckhout TJ, Schmidt W. 2011. Phosphate deficiency-induced cell wall remodeling – linking gene networks with polysaccharide meshworks. Plant Signaling & Behavior 6(5)
  • Lin W, Liao YY, Yang JW, Pan CY, Buckhout T, Schmidt W. 2011. Coexpression-based Clustering of Arabidopsis Root Genes Predicts Functional Modules in Early Phosphate Deficiency Signaling. Plant Physiology 155: 1383-1402
  • Lan P, Schmidt W. 2011. The enigma of eIF5A in the iron deficiency response of Arabidopsis. Plant Signaling & Behavior 6(4)
  • Lan P,Li W, Wen TN, Shiau JY, Wu YC, Lin W, Schmidt W.2011. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for Fe homeostasis. Plant Physiology 155: 821-834
  • Schmidt W, Buckhout T. 2011. A hitchhiker's guide to the Arabidopsis ferrome. Plant Physiology and Biochemistry 49(5): 462-470
  • Yang JW, Lin W, Schmidt W. 2010. Transcriptional Profiling of the Arabidopsis Iron Deficiency Response Reveals Conserved Transition Metal Homeostasis Networks. Plant Physiology 152: 2130-2141
Lee Tzu Wei 
Lab Manager
tjb@gate.sinica.edu.tw
Isabel Cristina Vélez Bermúdez 
Postdoctoral Fellow
isabelvelezbermudez@gmail.com
Jorge Enrique Salazar Henao 
Postdoctoral Fellow
jesalazarhenao@gmail.com
Yi-Hsiu Tsai 
Doctoral Student
yisho1108@gmail.com
Feng Mei Lien 
Assistant
avilta0218@yahoo.com.tw
JAIN DHARMESH
Doctoral Student
jaindharmesh01@gate.sinica.edu.tw