loading

韋保羅 (Verslues, Paul E.)

研究員

乾旱逆境是全球植物產量最嚴重的限制,並且由於氣候變遷而日益受到關注。令人驚訝的是,在細胞和生化層面上,對乾旱期間生長和維持產量重要的許多生理性狀仍知之甚少。韋保羅實驗室致力於揭示植物在生理層面抗旱的細胞訊息傳遞和生化機制。更一般地說,我們對植物生物學的理解落後於其他生物,例如:即使在研究最深入的模式植物阿拉伯芥中,具有三分之一未知細胞功能的蛋白質,其中高達 70% 是植物特異性蛋白質(Reiser et al., 2024, Genetics, 227: iyae027)。對植物細胞如何運作缺乏了解,具有學術上及實際上的意義,因為它限制了使用基因編輯等工具來提高植物的逆境抗性和農藝性狀。我們對乾旱(低水勢)抗性的遺傳和生化分析經常引導我們發現以前未經研究或功能詮釋不充分的蛋白質。因此,我們研究的另一個重點是建立未知功能植物蛋白的細胞和生化角色, 例如:我們最近發現 NPH3 結構域蛋白是一種新型植物特異性GTP酶(Upadhyay-Tiwari et al. 2024),以及MASP1蛋白具有意想不到的微管結合與穩定能力(Bhaskara et al., 2017)。透過將乾旱生理學與細胞和生化方法結合,我們的研究為基礎植物生物學做出了貢獻,同時也揭示了可能對植物改良有用的細胞機制。

韋保羅實驗室正在進行的研究可概括為三個主要焦點:

1. NPH3 結構域蛋白和 NRL5:了解一類新型 GTP 酶並用它來發現運輸、細胞極性和乾旱感知∕訊息傳遞等機制。

韋保羅實驗室使用脯胺酸脫氫酶1啟動子:螢光素酶報導基因(ProDH1pro:LUC)建立了針對乾旱∕低水勢 (yw) 相關突變株的正向遺傳學篩選(Shinde et al., 2016) 。 選擇ProDH1是因為它對代謝和逆境相關訊息的組合作出反應,且ProDH1的調控對於脯氨酸代謝的雙重作用至關重要:其是保護性脯氨酸積累的來源或ROS累積和細胞凋亡的促進因子(Verslues et al., 2023)。 因此,基於 ProDH1 啟動子的正向遺傳學篩選為研究逆境訊息傳遞和代謝調控提供了一個新的窗口,這在先前的篩選中是看不到的。

其中,從我們的 ProDH1pro:LUC 篩選中分離出的突變株:NPH3-RPT2-Like5(NRL5),在非光養性下胚軸 3(NPH3)結構域中具有單一胺基酸改變(P335L)。由於脯胺酸代謝失調,nrl5突變株對低水勢(yw)具有極高敏感性(圖 1)。我們進一步發現 NRL5和其他NPH3結構域蛋白是參與細胞內運輸的植物特異型 GTP 酶(Upadhyay-Tiwari et al. 2024;韋保羅實驗室未發表數據)。具有功能的NPH3結構域以及與運輸蛋白的相互作用是NRL5獨特極性定位所必需的。

NRL5 運輸功能示意圖

圖 1:NRL5 運輸功能和脯胺酸循環。NRL5 新發現了 GTP 酶活性以及在細胞內運輸中的作用。 NRL5 突變株對水限制非常敏感,因為細胞壁和細胞膜運輸的改變會導致對逆境的錯誤感知和脯氨酸循環的錯誤調控。脯胺酸脫氫酶(ProDH)和 P5C 合成酶(P5CS)是脯胺酸代謝循環中關鍵的逆境調控分子,它們在 nrl5 中受到錯誤調控,也是我們正在進行研究的一部分。

我們實驗室正在進行的研究顯示NRL5參與蛋白質運輸和分泌等多個方面。nrl5-1 的低水勢極度敏感性也是了解乾旱相關感知和訊息傳遞機制的重要資源,可透過抑制子篩選等方法來進行。這些努力將揭示細胞生物學廣泛關注的運輸調控和極性的新機制,以及乾旱感知、訊息傳遞和代謝調控的新方面。

2. EGR-MASP1 調控網路在乾旱逆境下控制植物生長。

EGR_MASP1--Fig_2

圖 2:EGR2和MASP1透過調控分生組織細胞分裂和細胞擴張來調控植物生長。EGR蛋白磷酸酶是限制生長的負調節因子(egr突變株比野生型生長更多),而 MASP1是負調節因子(異位表現 MASP1促進生長增加)。MASP1 的生長促進功能取決於其受 EGRs 調控的單一位點(S670)的磷酸化。模擬磷酸化MASP1-S670D在促進生長和防止乾旱逆境植物中常見的根分生組織尺寸變小方面高度活躍。 MASP1 和 EGR2 的相反梯度控制乾旱逆境下的分生組織大小和細胞分裂活性。

三種先前未鑑定的2C型蛋白磷酸酶(PP2Cs),我們將其命名為生長調節E分枝(EGR)PP2Cs,在中度乾旱∕低水勢(yw)逆境期間作為負調控因子以限制植物生長。egr1-1egr2-1 的磷酸蛋白質體學分析鑑定出微管相關逆境蛋白 1 (MASP1),該蛋白在乾旱逆境期間以依賴EGR調控磷酸化的方式促進生長,其作用的單一關鍵位點為S670。磷酸化的 MASP1 透過抵消乾旱引起的分生組織尺寸減少來促進生長(圖2;Bhaskara et al., 2017;Longkumer et al., 2022)。

EGR2 鄰近標記與egr1-1 egr2-1 的磷酸化蛋白質體學分析相結合,發現了一組有趣的推定EGR 調控蛋白(韋保羅實驗室未發表數據),其中包括參與細胞膜組織、運輸或訊息傳遞等多種蛋白質(圖 3)。進一步的研究正在分析這些可能的 EGR 調控蛋白及其在乾旱逆境下調節植物生長作用中的角色。

類似的實驗發現了可能的 MASP1 與微管相關蛋白的相互作用,與MASP1對微管穩定性的影響一致,以及可能優先與磷酸化(或去磷酸化)MASP1 相互作用的潛在細胞週期調節分子。 未來的工作將找出在乾旱下負責抑制分生組織細胞分裂的蛋白質,從而揭示在中等嚴重限水期間改善植物維持生長的新方法。

EGR_MASP1_research_model_--Fig_3

圖 3:EGR2 和 MASP1 相關蛋白調控植物生長、細胞膜訊息傳遞和微管動力學。

3. 脯胺酸代謝的奧秘:其調控、與氧化還原狀態的連結、對抗旱的貢獻。

脯胺酸代謝本身作為植物逆境抗性的貢獻者而令人感興趣,也提供了一個了解逆境訊息傳遞機制的窗口。對脯氨酸代謝的關注使我們發現了EGRs和NRL5,因此我們計劃繼續研究脯氨酸代謝本身,並利用它來確定乾旱訊息傳遞和代謝調控的機制。除了脯胺酸充當保護性溶質外,脯胺酸合成和分解代謝的循環(圖1)對於維持細胞氧化還原狀態也很重要(Sharma et al., 2011;Verslues et al., 2023)。 除了ProDH1之外,控制脯氨酸循環通量並且為乾旱誘導的脯氨酸積累所需的另一個關鍵逆境調節酶是P5CS1。人們對P5CS1的調控知之甚少,部分原因是很難表現標記的 P5CS1 並研究其在基因轉殖植物中的定位或相互作用。為了克服這一障礙,韋保羅實驗室建立了P5CS1-YFP基因敲入品系(YFP 在內源P5CS1基因座框內插入),並證明P5CS1優先定位在葉綠體周圍(Longkumer et al., 2024)。  這解決了長期存在關於P5CS1定位的問題,同時也重新強調了脯氨酸代謝與其他代謝途徑以及葉綠體氧化還原狀態關聯性的老問題。由於P5CS1在傳統基因轉殖植物中很難研究,P5CS1敲入品系也提供了一種新工具來研究控制P5CS1表現和次細胞定位的因素並鑑定P5CS1相互作用蛋白。韋保羅實驗室也繼續研究其他影響乾旱引起的脯氨酸積累和抗旱的調控因子,尤其是尚未鑑定的蛋白激酶和轉運蛋白。

All publications

Selected Publications

  • Verslues PE*, Upadhyay-Tiwari N (2024) Nonphototrophic hypocotyl 3 domain proteins: traffic directors, hitchhikers, or both? New Phytologist. https://doi.org/10.1111/nph.20211
  • Upadhyay-Tiwari N, Huang XJ, Lee YC, Singh SK, Hsu CC, Huang SS, Verslues PE*(2024) The nonphototrophic hypocotyl 3 (NPH3) domain protein NRL5 is a trafficking-associated GTPase essential for drought resistance. Science Advances, 10(32):eado5429.
  • Longkumer T, Grillet L, Chang HY, Luong TC, Chen CY, Putra H, Schmidt W, Verslues PE* (2024) Insertion of YFP at P5CS1 and AFL1 shows the potential, and potential complications, of gene tagging for functional analyses of stress-related proteins. Plant, Cell & Environment, 47 (6):2011-2026.
  • Verslues PE* (2024) Please, carefully, pass the P5C. Journal of Experimental Botany, 75(3):663-666.
  • Wong MM, Huang X-J, Bau Y-C, Verslues PE* (2024) AT Hook-Like 10 phosphorylation determines Ribosomal RNA Processing 6-Like 1 (RRP6L1) chromatin association and growth suppression during water stress. Plant Cell & Environment 47: 24-37
  • Eckardt NA, Cutler S, Juenger TE, Marshall-Colon A, Udvardi M, Verslues PE (2023) Focus on climate change and plant abiotic stress biology. Plant Cell 35:1-3
  • Juenger TE*, Verslues PE* (2023) Time for a drought experiment: Do you know your plants’ water status?  Plant Cell 35:10-23
  • Verslues PE*, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu P-K, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA (2023) Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. Plant Cell 35:67-108
  • Bhaskara GB, Lasky JR, Razzaque S, Zhang L, Haque T, Bonnette JE, Civelek GZ, Verslues PE, Juenger TE* (2022) Natural variation identifies new effectors of water use efficiency in Arabidopsis. Proceedings of the National Academy of Sciences USA  119: (33) e2205305119
  • Verslues PE*, Longkumer T (2022) Size and activity of the root meristem: a key for drought resistance and a key model of drought-related signaling.  Physiologia Plantarum 174: e13622
  • Longkumer T, Chen C-Y, Biancucci M, Bhaskara GB, Verslues PE* (2022) Spatial differences in stoichiometry of EGR phosphatase and Microtubule-Associated Stress Protein 1 control root meristem activity during drought stress.  Plant Cell 34: 742–758
  • GL Chong, MH Foo, WD Lin, MM Wong, PE Verslues* (2019) Highly ABA-Induced 1 (HAI1)-Interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites. Proceedings of the National Academy of Sciences 116(44):22376-22385.
  • GB Bhaskara, MM Wong, PE Verslues* (2019) The flip side of phospho‐signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. Plant, cell & environment 42 (10), 2913-2930
  • Kumar MN, Bau Y-C, Longkumer T, Verslues PE* (2019) Low water potential and At14a-Like1 (AFL1) effects on endocytosis and actin filament organization. Plant Physiology 179: 1594-1607
  • Kalladan R, Lasky JR, Sharma S, Kumar MN, Juenger TE, Des Marais DL, Verslues PE* (2019) Natural variation in 9-cis-epoxycartenoid dioxygenase 3 and ABA accumulation. Plant Physiology 179: 1620-1631
  • Wong MM, Bhaskara GB, Wen T-N, Lin W-D, Nguyen TT, Chong G-L, Verslues PE (2019) Phosphoproteomics of Arabidopsis Highly ABA-Induced1 identifies AT-Hook Like10 phosphorylation required for stress growth regulation. Proceedings of the National Academy of Sciences USA  116 (6): 2354-2363
  • Kalladan R, Lasky JR, Chang TZ, Sharma S, Juenger TE, Verslues PE (2017) Natural variation identifies genes affecting drought-induced Abscisic Acid accumulation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA  114: 11536-11541
  • Bhaskara GB, Nguyen TT, Yang T-H, Verslues PE (2017) Analysis of Phosphoproteome Remodeling After Short Term Water Stress and ABA Treatments versus Longer Term Water Stress Acclimation. Frontiers in Plant Science 8: 523
  • Wong MM, Chong GL, Verslues PE (2017) Epigenetics and RNA processing: Connections to drought, salt and ABA?  In: Methods in Molecular Biology, Plant Stress Tolerance: Methods and Protocols (Second Edition) vol 1631, Chapter 1. Sunkar, R ed, Springer
  • Verslues PE (2017) Rapid quantitation of Abscisic Acid by GC-MS/MS for studies of abiotic stress response.  In: Methods in Molecular Biology, Plant Stress Tolerance: Methods and Protocols (Second Edition), vol 1631, Chapter 21. Sunkar, R ed, Springer
  • Bhaskara GB, Wen T-N, Nguyen TT, Verslues PE (2017) Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 control microtubule stability, plant growth, and drought response.  Plant Cell 29: 169-191
  •  Des Marais D*, Juenger TE, Chang, TZ, Verslues PE, Lasky JR (2017) Interactive effects of water limitation and elevated temperature on the physiology, development, and fitness of diverse accessions of Brachypodium distachyon.  New Phytologist  214(1): 132-144
  •  Verslues PE (2017) Time to grow: Factors that control plant growth during mild to moderate drought stress. Plant Cell & Environment  40: 177-179  (commentary article)
  • Shinde S, Villamor JG, Lin W-D, Sharma S, Verslues PE (2016) Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiology 172: 1074-1088.
  • Verslues PE (2016) ABA and cytokinins: challenge and opportunity for plant stress research. Plant Molecular Biology 91:629-640 (review)
  • Kumar MN1, Hsieh Y-F1, Verslues PE (2015) At14a-Like1 participates in membrane associated mechanisms promoting growth during drought in Arabidopsis thaliana.  Proceedings of the National Academy of Sciences USA 112: 10545-10550 (1. Equally contributing authors)
  • Bhaskara GB, Yang T-H, Verslues PE (2015) Dynamic proline metabolism: Importance and regulation in water limited environments. Frontiers in Plant Science6: 484. doi: 410.3389/fpls.2015.00484
  • Lovell JT*, Mullen JL, Lowry DB, Awole K, Richards JH, Sen S, Verslues PE, Juenger TE, McKay JK (2015) Exploiting differential gene expression and epistasis to discover candidate genes for drought-associated QTLs in Arabidopsis thalianaPlant Cell 27: 969-983
  • Haswell ES, Verslues PE (2015) The ongoing search for the molecular basis of plant osmosensing.  Journal of General Physiology 145: 389–394
  • Kumar MN, Verslues PE (2015) Stress physiology functions of Arabidopsis Histidine Kinase (AHK) cytokinin receptors. Physiologia Plantarum 154: 369–380
  • Wilson ME, Basu MR, Bhaskara GB, Verslues PE, Haswell ES (2014) Plastid hypoosmotic stress activates cellular osmotic stress responses.  Plant Physiology 165: 119-128
  • Verslues PE1, Lasky JR1, Juenger TE, Liu T-W, Kumar MN (2014) Genome wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis thaliana.  Plant Physiology 164: 144-159       1. Co-first authors
  • Sharma S, Shinde S, Verslues PE  (2013) Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana.  BMC Plant Biology13:182
  • Verslues PE, Bhaskara GB, Kesari R, Kumar MN (2013) Drought tolerance mechanisms and their molecular basis.  In: Plant Abiotic Stress-Second Edition;  Jenks, M.A. and Hasegawa, P.M. eds.; John Wilely and Sons, Inc.  (review book chapter)
  • Kumar MN, Jane W-N, Verslues PE (2013) Role of the putative osmosensor Arabidopsis Histidine Kinase 1 (AHK1) in dehydration avoidance and low water potential response.  Plant Physiology 161: 942-953   (Reccomended by Faculty of 1000)
  • Sharma S., Lin W, Villamor JG, Verslues PE (2013) Divergent low water potential response in Arabidopsis thaliana accessions Landsberg erecta and Shahdara.  Plant Cell & Environment 36: 994-1008
  • Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the Highly-ABA-Induced Clade A protein phosphatase 2Cs.  Plant Physiology 160: 379-395
  • Kesari R, Lasky JR, Villamor JG, Des Marais DL, Chen Y-JC, Liu T-W, Lin W, Juenger TE, Verslues PE (2012) Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation.  Proceedings of the National Academy of Sciences USA 109: 9197-9202
  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue specific proline synthesis and catabolism in growth and redox balance at low water potential.  Plant Physiology 157: 292-304
  • Verslues PE, Juenger TE (2011) Drought, metabolites and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments.  Current Opinion in Plant Biology 14: 240–245
  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction.  The Arabidopsis Book 8: 140
  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.  Plant Cell & Environment 33: 1838-1851
  • Verslues PE  (2010) Quantification of water stress-induced osmotic adjustment and proline accumulation for Arabidopsis thaliana molecular genetic studies.  In R. Sunkar ed.  Plant Stress Tolerance, Methods in Molecular Biology 639.  Springer Science+Business Media, LLC. (methods book chapter)
Neha Upadhyay Tiwari
吳妮霞
Postdoctoral Fellow
nehaut@gate.sinica.edu.tw
Hao-Yi Chang
張皓宜
Research Assistant
haoyi1221@gate.sinica.edu.tw
I-Chen Chen
陳怡蓁
Research Assistant
ichenchen@gate.sinica.edu.tw
Rishima Maheendran
芮熙瑪
Doctoral Student
maheendran0001@gate.sinica.edu.tw
Thuy Thi-Thu Cao
高秋翠
Doctoral Student
cao0001@gate.sinica.edu.tw
Dare Dolapo Oladele
歐拉德
Doctoral Student
Oladele0001@gate.sinica.edu.tw
Shih-Shan Huang
黃詩珊
Lab manager
manager426@gate.sinica.edu.tw

國際

  • 2022 植物科學及技術組傑出校友獎 - 密蘇里大學農業食品暨自然資源學院

國內

  • 2020 傑出研究獎 - 科技部
  • 2019 深耕計畫 - 中央研究院
  • 2014 年輕學者研究著作獎 - 中央研究院
  • 2013 吳大猷先生紀念獎 - 科技部
  • 2013 楊祥發院士傑出農業科學年輕學者獎 - 財團法人楊祥發紀念教育基金會
  • 2009 前瞻計畫 - 中央研究院