Travel to New Dimensions- LSM 880

Carl Zeiss Microlmaging GmbH, Vanessa

2015/9/11

LSM 880: The Power of Sensitivity

Our Latest Member of the LSM 880 with GaAsP Detectors

Carl Zeiss MicroImaging GmbH, Vanessa

Definition

anymore.

2015/9/11 Page 2

ZEISS

ZEISS

The Resolution of a Microscope is limited

Image Object The resolution limit is reached, when two point-like objects can d=0.4 μm not be imaged as two distinct structures The distance between the objects is called the . resolution limit. d=0.3 μm

The Point-Spread-Function is a 3-dimensional function

The Resolution of a Microscope is limited

Carl Zeiss MicroImaging GmbH, Vanessa

Different Beam Path of Image Formation Fluorescence -- Wavelength of visible light

ZEISS

Human endothial cells with 3 fluorescence markers: Actin (Phalloidin/TRITC), von Willebrand Factor (Oregon-green), cell nucleus (DAPI).

Carl Zeiss Microlmaging GmbH, Vanessa

	Wavelength color			
	1. 340 - 400 nm near Ultraviolet (UV) - Invisible			
	2. 400 - 430 nm Violet			
	3. 430 - 500 nm Blue			
	4. 500 - 560 nm Green			
7	5. 560 - 620 nm Yellow to Orange			
	6. 620 - 700 nm Orange to Red			
8	7. Over 700 nm near Infrared (IR) - Invisible			
	(Invisible) Ultraviolet UV 300nm 400nm 500nm 600nm 700nm 800nm			
	2015/9/11 Page	12		

The Comparison Between the LSM and the Conventional Light Microscope

roscope
ise
ade,
by Itiplier
ise ad by Iti

Confocal Laser Scanning Microscopy Optical sectioning: elimination of out-of-focus

The Point-Spread-Function is a 3-dimensional function

ZEISS

Conventional/Widefield Fluorescence

Background emission from deeper image planes

Structures which are "out-of-focus" become visible in conventional widefield-fluorescence. Because of the focal depth inherent in all objectives, they are visible as an image blur (haze, image fog).

Carl Zeiss Microlmaging GmbH, Vanessa

2015/9/11 Page 16

ZEISS

ZEISS

The confocal principle

Conventional images from 3dimensional objects consists of light from structures, which are in focus and the light from structures which are not in focus.

Carl Zeiss MicroImaging GmbH, Vanessa

2015/9/11 Page 17

Confocal Laser Scanning Microscopy

Optical sectioning: elimination of out-of-focus light

ZEISS

Carl Zeiss MicroImaging GmbH, Vanessa

Confocal: Point Scanning

From Spot to Image

- To get a 2 dimensional image from the specimen, the excitation spot has to be moved over the specimen
- · The scanning mirrors move the excitation beam in a line wise fashion

3 Channel Spectral with one GaAsP Detector

Unmatched sensitivity

ZEISS

GaAsP (*Gallium Arsenide Phosphide*) is a semiconductor material with ideal characteristics for converting photons into electrical signals.

Benefits of GaAsP detectors:

Almost two times better SNR than PMTs (resulting in higher sensitivity, better image quality and higher acquisition speed).

GaAsP detectors can be operated in integration mode as well as in photon counting mode.

LSM 710/780/880

Innovative Beam Path Technology

Get More Results With GaAsP Detectors

Applications Benefit from Improved Sensitivity in Many Ways

Better image quality

 Higher sensitivity equals better signalto-noise ratio (detection of faint signals)

Faster scanning

- Data recording at shorter pixel times
- Need for averaging strategies largely reduced
- 13 fps

Acquisition of more data

 Data recording at lower laser power (reduced bleaching and photo-toxic effects in live cell imaging) Sample: Drosophila larva developing brain and eye. Labeled with three FP's. Fluorescence boosted by Alexa conjugated antibodies against the FP's.

ZEISS

ZEISS

Carl Zeiss MicroImaging GmbH, Vanessa

2015/9/11 Page 24

Carl Zeiss MicroImaging GmbH, Vanessa

LSM 880 Laser line

ZEISS

Laser line	Fluorochrome	
405 nm	DAPI, Hoechst, Alexa 405, BFP	
458 nm	ECFP	
488 nm	Alexa 488, Fluo-4, FITC, eGFP	
514 nm	EYFP	
561 nm	Rhodamine, Alexa 546, 555, 568, Cy3, TRITC, DsRed,	
	Texas Red, MitoTracker Red, mCherry	
633 nm	Alexa 633, Cy5	

Detectors:

QUASAR Detection (3) for fluorescence images

1 transmitted PMT detector for Bright Field (PH/DIC) images

ZEN 2 - Efficient Navigation Powerful software for powerful LSM systems

Carl Zeiss Microlmaging GmbH, Vanessa

ZEISS

Major tasks of a LSM Laser and scanning mirror control

ZEISS

Two independent scanning mirrors

ZEN 2

Reuse function: recur all parameters and setting

Carl Zeiss MicroImaging GmbH, Vanessa

2015/9/11 Page 34

Carl Zeiss MicroImaging GmbH, Vanessa

Major tasks of a LSM Optimal optical sectioning in thick tissue Z stack

Tile scanning with motorized scanning stage 大面積高倍數掃描

40X objective, 10X9

Carl Zeiss Microlmaging GmbH, Vanessa

2015/9/11 Page 42

Major tasks of a LSM Optimal optical sectioning in thick tissue

 An overlay (maximum projection) of these single images results in an image with an enhanced depth of focus

• This image contains all information from the specimen

Every detail is in focus !

Carl Zeiss Microlmaging GmbH, Vanessa

2015/9/11 Page 41

ZEISS

ZEISS

LSM 880 – Get More Results ! Innovative High-End LSMs from Carl Zeiss

- Extremely light-efficient instrument design
- New super-sensitive GaAsP detectors for LSM 880
- QUASAR detection unit allows for maximum flexibility in signal recording
- Modularity: Configuration of sophisticated imaging platforms through integration of LSM with additional detection modules
- ZEN 2: Powerful software for sophisticated LSM applications
- User-friendly graphical interface

LSM 880: The Power of Sensitivity

Our Latest Member of the LSM 880 with GaAsP Detectors

In practice, confocal imaging is mostly a compromise that tries to balance resolving power and SNR

46

ZEISS

The Problem:

The resolving power of LSMs stays far below its potential maximum when setting the confocal pinhole to 1 AU.

Note:

11.09.2015

The signal-to-noise ratio (SNR) is acceptable if the pinhole is set to 1 AU.

Airyscan introduces a revolutionary new concept designed to overcome a "classical limitation" of LSMs

Airyscan overcomes a "classical limitation" of LSMs with its arrayed detector elements all utilized in parallel

48

ZEISS

Fixed registration of excitation spot (blue) and detection unit

Solution:

Array of detection elements

Benefits:

Improved SNR (utilizes light otherwise rejected at small pinhole diameters) and additional spatial information about the signal!

Note:

Each detector element compares to a confocal pinhole set to 0.2 AU ("sub-Airy sampling").

In brief: Airyscan takes advantage of spatial information not recorded with "conventional LSMs"

The offset of individual detectors to the optical axis provides **additional spatial information** in Airyscan (detectors of a "conventional" LSM just integrate all light passing through its pinhole).

Linear deconvolution assigns all signals (and frequencies) recorded by individual detector elements to their appropriate locations.

Isotropic 1.7-fold increase in resolving power!

(Further reading: White paper on Airyscan)

11.09.2015

"...thereby allowing for a much more accurate quantification" (Karlseder and Fitzpatrick, The Salk Institute, La Jolla, CA, USA)

49

Telomere replication without RTEL1: Stalled forks and telomere breakage visualized as doubled dots using Airyscan. Resolution is meaningless without good SNR.

Courtesy: J. Karlseder Ph.D. (Molecular and Cell Biology Laboratory) and J. Fitzpatrick Ph.D. (Director, Waitt Advanced Biophotonics Core), The Salk Institute, La Jolla, USA.

Carl Zeiss Microscopy

11.09.2015

54

LSM 880 – Airyscan detects intensity distribution Narrower PSF means improved resolution

Airyscan reveals more details in your samples by increasing the resolution of LSM up to 1.7-fold

ZEISS

Carl Zeiss Microscopy

With its drastically improved SNR, Airyscan delivers quality images previously impossible with LSMs

Airyscan performs multi-color imaging of samples stained with up to four fluorescent labels

Carl Zeiss Microscopy

ZEISS

Airyscan delivers exceptional data of live samples using the same laser power than in confocal imaging

Mitosis in HeLa-Kyoto cell line during mitosis. Imaged with ZEISS LSM 880 / Airyscan.

ZEISS

59

ZEISS

Video showing Histone 2B (H2B, red, mCherry) and microtubule end-binding protein 3 (EB3, blue, EGFP)

Sample courtesy of: Jan Ellenberg, EMBL, Heidelberg.

11.09.2015

Airyscan: Software Integration

32x . Expand All Collapse All 🖻 🗄 🖮 16bit 0,74 🗘 111,6 ‡ 1 AU max 623 🛟

1,0 ‡

✓ Show all

Carl Zeiss Microscopy - LSM 880 Sales Training

LSM 880 with Airyscan: Easy of use 3 different modes of Airyscan detector

400
500
600
700

Use Dye
Color Detector Range
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

<t

a post acquisition step.

CO: Confocal mode just uses the sum total signal from the array, using it as a single extra channel.

Page

ZEISS

ZEISS

LSM 880 with Airyscan: Easy of use VP Mode

Select "VP" mode BEFORE acquisition

In the Airyscan processing tab, instead of SR strength, the software display VP parameters (1-4 AU)

I	Airyscan				
	X 🗆 👳		••		
	✔ Source Image	🖌 VP Image 📃 Table			
		<u>23</u>			
		2.3 :			

LSM 880 with Airyscan: Easy of use SR Mode Detector View

	LSM 510 Meta	LSM 880 / Airyscan
Data depth	8, 12 bit	8, 12, <mark>16 bit</mark>
視野大小	18 mm	20 mm
光學變焦	0.7x~40x	0.6x~40x
掃描速度	5 fps (512x512)	13 fps (512x512)
光譜分析	解析度 ~10 nm	解析度~3 nm
穿透光感測 器	穿透光 T-PMT	穿透光 T-PMT
反射光訊號	無	感測器可接收反射光的訊號
軟體	AIM	ZEN
雷射搭配	Ar laser (458, 477, 488, 514nm); HeNe laser 543nm; HeNe laser 633nm; Diode laser 405nm	Diode laser 405nm; Ar laser 458, 488, 514nm; DPSS-laser 561nm; HeNe laser 633nm;
應用	一般玻片樣品confocal 掃圖與分析	高感度GaAsP感測器,與高超解析度(SR, VP, CO mode) ⁶⁶

Thank you for your attention!!

2015/9/11 Page 67